

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Level In Physics (WPH14) Paper 01 Further Mechanics, Fields and Particles

Question Number	Answer	Mark
1	The only correct answer is D (thermionic emission)	1
	A is not correct because it is not caused by beta decay B is not correct because it is not caused by excitation C is not correct because it is not caused by the photoelectric effect	
2	The only correct answer is A (kg m ⁻³)	1
	B is not correct because acceleration is a vector quantity C is not correct because electric field strength is a vector quantity D is not correct because impulse is a vector quantity	
3	The only correct answer is B (lepton, meson)	1
	A is not correct because alpha is not fundamental C is not correct because proton is not fundamental and electron is D is not correct because muon is fundamental	
4	The only correct answer is A (134 neutrons, 84 protons)	1
	B is not correct because it must be 134 neutrons, 84 protons C is not correct because it must be 134 neutrons, 84 protons D is not correct because it must be 134 neutrons, 84 protons	
5	The only correct answer is D $(\frac{F}{B \times e \times \sin 66^{\circ}}, \text{ from Y to X})$	1
	A is not correct because the angle between the direction of motion and the magnetic field is 66° and the direction of v is from Y to X B is not correct because the angle between the direction of motion and the magnetic field is 66° C is not correct because the direction of v is from Y to X	
6	The only correct answer is D $(\sqrt{2 \times 9.11 \times 10^{-31} \times 3.5 \times 10^{-28}})$	1
	A is not correct because this is not $\sqrt{2 \times m \times E_k}$ B is not correct because this is not $\sqrt{2 \times m \times E_k}$ C is not correct because this is not $\sqrt{2 \times m \times E_k}$	
7	The only correct answer is B (conserved, not conserved)	1
	A is not correct because total kinetic energy is not conserved C is not correct because total momentum is conserved and total kinetic energy is not conserved D is not correct because total momentum is conserved	
8	The only correct answer is D (The particles are accelerated by electric fields inside the dees.)	1
	A is not correct because this statement about cyclotrons is correct B is not correct because this statement about cyclotrons is correct C is not correct because this statement about cyclotrons is correct	

9	The only correct answer is B (Most of the mass of the atom is concentrated in a small volume in the atom.) A is not correct because if all of the positive and negative charge was in the same location it would be neutral and have no effect on the alpha particles C is not correct because the experiments gave no information about energy levels D is not correct because protons and neutrons had not been identified	1
10	The only correct answer is C $(\frac{450 \times 10^9 \times 1.6 \times 10^{-19}}{(3.00 \times 10^8)^2})$ A is not correct because this uses MeV instead of GeV and suggests that only the mass-energy of one of the colliding particles has been conserved B is not correct because this uses MeV instead of GeV	1
	D is not correct because this suggests that the mass-energy in the interaction has been doubled	

Question Number	Answer		Mark
11	use of eV to J conversion	(1)	1
	Use of $\Delta E_{\text{grav}} = mg\Delta h$	(1)	
	$\Delta E_{\rm grav} = 30~{\rm J}$ with comparison and conclusion that it is not justified ${\bf Or}~\Delta E_{\rm grav} = 1.9 \times 10^{20}~{\rm eV}$ with comparison and conclusion that it is not justified ${\bf Or}~({\rm required})$ mass of brick = 3.6 kg with comparison and conclusion that it is not justified ${\bf Or}~({\rm required})$ height = 1.4 m with comparison and conclusion that it is not justified ${\bf Example~of~calculation}$ $E=2.4\times 10^{20}\times 1.6\times 10^{-19}~{\rm C}=38.4~{\rm J}$ $\Delta E_{\rm grav}=2.8~{\rm kg}\times 9.81~{\rm N~kg^{-1}}\times 1.1~{\rm m}=30.2~{\rm J}$ 30 J < 38 J, so not justified	(1)	3
	Total for question 11		3

Question Number	Answer		Mark
12(a)	At least 4 radial straight lines from point	(1)	
	(Radial) ruled lines equally spaced	(1)	
	Arrow(s) on line(s) outward from point (only)	(1)	3
12(b)	Use of $E = \frac{Q}{4\pi\varepsilon_0 r^2}$		
	Or Use of $E = \frac{kQ}{r^2}$	(1)	
	Addition of magnitudes of field strength due to P and field strength due to Q	(1)	
	$E = 9.9 \times 10^4 \text{ N C}^{-1}$	(1)	3
	$E_{P} = \frac{14 \times 10^{-9} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (4.0 \times 10^{-2} \text{ m})^{2}} = 7.9 \times 10^{4} \text{ N C}^{-1}$		Č
	$E_{\rm Q} = \frac{-14 \times 10^{-9} \rm C}{4\pi \times 8.85 \times 10^{-12} \rm F m^{-1} \times (8.0 \times 10^{-2} \rm m)^2} = -2.0 \times 10^4 \rm N C^{-1}$		
	$E = 7.9 \times 10^4 \text{ N C}^{-1} + 2.0 \times 10^4 \text{ N C}^{-1}$ = $9.9 \times 10^4 \text{ N C}^{-1}$		
	Total for question 12		6

Question Number	Answer	Mark
13(a)	Use of $s = vt$ (1)	
	Distance = 647 (m) (1)	2
	Example of calculation	
	$s = 0.980 \times 3.00 \times 10^8 \mathrm{m \ s^{-1}} \times 2.20 \times 10^{-6} \mathrm{s}$	
	= 647 m	
13(b)	Relativistic effects occur	
	Or travelling at relativistic speed (1)	
	Lifetime of muon increases (1)	
	Muon travels greater distance (before decaying) (1)	3
	Total for question 13	5

Question Number		A	Answer		Ma	ırk
14*	This question assesses structured answer with					
	Marks are awarded for shows lines of reasonir		and for how the ans	wer is structured and	1	
	The following table she content.	_	should be awarded	for indicative		
	Number of indicative marking points seen in answer	Number of marks awarded for indicat marking points	Max linkage mark available	Max final mark		
	6	4	2	6		
	5	3	2	5		
	4	3	1	4		
	3	2	1	3		
	2	2	0	2		
	1	1	0	1		
	0	0	0	0		
	The following table she of reasoning.	ows how the marks			es	
				warded for structure ined line of reasoning		
	Answer shows a cohere structure with linkages a lines of reasoning demo	and fully sustained	of unswer and susta	2		
	Answer is partially structure linkages and lines of rea	ctured with some		1		
	Answer has no linkages and is unstructured			0		
	Guidance on how the name content should be added with five indicative may and lines of reasoning a for partial structure and linkages between point overall score of 3 mark Indicative content: IC1 (When the sw	d to the mark for ling rking points which scores 4 marks (3 ml some linkages and s, the same five ind	nes of reasoning. For is partially structure tarks for indicative lines of reasoning) icative marking pos- cative content and n	or example, an answord with some linkage content and 1 mark of there are no ints would yield an o marks for linkages	es	
	IC2 Charge on cap	pacitor increases				
	IC3 p.d. across ca	pacitor increases a	and p.d. across res	sistor decreases		
	IC4 $(I = V/R, so)$	current in circuit d	lecreases (as p.d.	decreases)		
	,	ecreases,) rate of crease of p.d. decre		S		
	in p.d. across	capacitor	$r = V_0$, current = 0	, no further change	e 6	,
	Total for question 1	4			6	5

Question Number	Answer		Mark
15(a)(i)	By (Fleming's) left hand rule ((F)LHR) Or magnetic field perpendicular to current, so (magnetic force)	(1)	
	Force is up on left/AC/A and down on right/BD/D (dependent on MP1)	(1)	2
15(a)(ii)	Use of $F = BIl$	(1)	
	Use of moment = force × perpendicular distance	(1)	
	Resultant moment = $9.1 \times 10^{-3} \text{ N m}$	(1)	3
	Example of calculation $F = 0.68 \text{ T} \times 0.24 \text{ A} \times 0.05 \text{ m} \times 32$ = 0.26 N		
	Moment = $(0.26 \text{ N} \times \frac{0.035 \text{ m}}{2}) \times 2$ = $9.1 \times 10^{-3} \text{ N m}$		
15(b)(i)	Change in flux <u>linkage</u> (with coil) Or (Wires) cut lines of (magnetic) flux	(1)	
	Induces emf	(1)	2
15(b)(ii)	Calculates area of coil	(1)	
	Applies knowledge of flux = magnetic flux density \times area	(1)	
	Use of flux linkage = $N \varphi$	(1)	
	Use of $\varepsilon = dN\varphi/dt$	(1)	
	V = 0.48 (V) with comparison and conclusion that it is sufficient	(1)	5
	Example of calculation Area = $0.05 \text{ m} \times 0.035 \text{ m} = 1.75 \times 10^{-3} \text{ m}^2$ $\varphi = 0.68 \text{ T} \times 1.75 \times 10^{-3} \text{ m}^2$ = $1.19 \times 10^{-3} \text{ Wb}$		
	$N \varphi = 32 \times 1.19 \times 10^{-3} \text{ Wb} = 0.038 \text{ Wb}$ $\varepsilon = 0.038 \text{ Wb} / 0.080 \text{ s} = 0.48 \text{ V}$ V = 0.48 V >> 0.1 V so it is sufficient		
	Total for question 15		12

Question Number	Answer		Mark
16(a)(i)	Use of $s = ut + \frac{1}{2}at^2$	(1)	
	$a = 0.83 \text{ (m s}^{-2}) \text{ (at least 2 sf)}$	(1)	2
	Example of calculation $0.02 \text{ m} = \frac{1}{2} a \times (0.22 \text{ s})^2$		
4.5(.)(4)	$a = 0.83 \text{ m s}^{-2}$	(4)	
16(a)(ii)	Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$	(1)	2
	$Q = 1.9 \times 10^{-9}$ (C) (at least 2 sf)	(1)	2
	Example of calculation		
	$1800 \text{ V} = 8.99 \times 10^9 \text{ Nm}^2 \text{ C}^{-2} \times \frac{Q}{0.0095 \text{ m}}$		
	$Q = 1.9 \times 10^{-9} \mathrm{C}$		
16(a)(iii)	Use of $E = V/d$	(1)	
	Use of $F = EQ$ (ecf from (ii))	(1)	
	Use of $F = ma$	(1)	
	$a = 0.95 \text{ m s}^{-2}$ with comparison and conclusion that other forces must be acting		4
	Or (resultant) force producing the acceleration in part (i) = 1.4×10^{-4} N with comparison and conclusion that other forces must be acting	(1)	•
	Example of calculation $E = 1800 \text{ V} \div 0.02 \text{ m} = 90000 \text{ V m}^{-1}$ $F = 90000 \text{ V m}^{-1} \times 1.9 \times 10^{-9} \text{ C}$ $F = 1.7 \times 10^{-4} \text{ N}$ $a = 1.7 \times 10^{-4} \text{ N} / 0.00018 \text{ kg}$ $a = 0.95 \text{ m s}^{-2}$ $a = 0.95 \text{ m s}^{-2} > a = 0.8 \text{ m s}^{-2}$, so other forces must be acting		
16(b)(i)	Similarity In both there is no acceleration Or They are at constant speed in both Or In both there is no accelerating force	(1)	
	Differences (max 2) In the model there is a field, but there is no field (in the drift tube)	(1)	
	In the linac the particle has charge, but no charge on the ball	(1)	
	In the model the lengths of the sections are constant, but in a linac the lengths of the drift tubes increase	(1)	
	In a linac the time spent in each tube is constant, but in the model the time spent in successive sections decreases	(1)	3
16(b)(ii)	The particles must spend the same time in the drift tubes	(1)	
	The speed increases (between tubes), so they travel further in that time Or they accelerate (between tubes), so they travel further in that time	(1)	
	The length of the drift tubes must increase	(1)	3
	Total for question 16		14

Question Number	Answer		Mark
17(a)(i)	Calculates area swept out	(1)	
	Use of $s = vt$	(1)	
	Calculates volume of air	(1)	
	Use of $m = \rho V$	(1)	
	$m = 3.3 \times 10^{-3} (\text{kg})$	(1)	5
	Example of calculation $A = \pi \times (0.041 \text{ m})^2$ $= 5.28 \times 10^{-3} \text{ m}^2$ $s = 2.4 \text{ m s}^{-1} \times 0.2 \text{ s} = 0.48 \text{ m}$ $V = 5.28 \times 10^{-3} \text{ m}^2 \times 0.48 \text{ m} = 2.53 \times 10^{-3} \text{ m}^3$ $m = 1.3 \text{ kg m}^{-3} \times 2.53 \times 10^{-3} \text{ m}^3$ $m = 3.29 \times 10^{-3} \text{ kg}$		
17(a)(ii)	Use of $p = mv$	(1)	
	$p = 7.91 \times 10^{-3} \text{ kg m s}^{-1} (\text{ecf from (i)})$	(1)	2
	Example of calculation $p = 3.29 \times 10^{-3} \text{ kg} \times 2.4 \text{ m s}^{-1}$ $p = 7.91 \times 10^{-3} \text{ kg m s}^{-1}$		
17(a)(iii)	Use of $F = \Delta mv / \Delta t$	(1)	
	F = 0.039 N (ecf from (ii))	(1)	2
	Example of calculation $F = 7.91 \times 10^{-3} \text{ kg m s}^{-1} / 0.2 \text{ s}$ F = 0.039 N		
17(b)(i)	Vertically downward arrow from plane labelled weight/W/mg	(1)	
	Arrow along thread away from plane labelled tension/ T	(1)	2
17(b)(ii)	States $mg = T \cos \theta$	(1)	
	States $mv^2 / r = T \sin \theta$	(1)	
	Suitable algebra to arrive at tan $\theta = v^2 / rg$	(1)	3
	$ \begin{array}{c} \mathbf{OR} \\ \tan \theta = F_{\mathbf{C}} / W \end{array} $		
	substitute $F_C = mv^2 / r$ and $W = mg$		
	Suitable algebra to arrive at tan $\theta = v^2 / rg$		
	Example derivation $mg = T \cos \theta$ $mv^{2} / r = T \sin \theta$		
	$\sin \theta / \cos \theta = mv^2 / rmg$ $\tan \theta = v^2 / rg$		

17(b)(iii)	Use of $\tan \theta = v^2 / rg$	(1)	
	Use of $\omega = \frac{2\pi}{T}$ and use of $v = \omega r$ Or Use of $v = \frac{2\pi r}{T}$		
	Or Use of $v = \frac{2\pi r}{T}$	(1)	
	t = 1.4 s	(1)	3
	Example of calculation $\tan 22^{\circ} = v^2 / 0.21 \text{ m} \times 9.81 \text{ N kg}^{-1}$ $v = 0.91 \text{ m s}^{-1}$ $0.91 \text{ m s}^{-1} = 2 \times \pi \times 0.21 \text{ m} / T$ t = 1.446 s		
	Total for question 17		17

Question Number	Answer		Mark
18(a)	Use of $r = \frac{p}{BQ}$	(1)	
	B = 1.15 T	(1)	2
	Example of calculation		
	$1.99 \text{ m} = \frac{3.67 \times 10^{-19} \text{ kg m s}^{-1}}{B \times 1.60 \times 10^{-19} \text{ C}}$		
	B = 1.15 T		
18(b)(i)	Baryon	(1)	1
18(b)(ii)	Conservation of charge		
	Show charge for all particles: Σ^+ is $(+)1$, π^+ is $(+)1$, n is 0	(1)	
	Show total charge before = total charge after, with conclusion that charge is	(1)	
	conserved Dependent on MP1	(1)	
	Conservation of lepton number		
	Show lepton number for all particles: Σ^+ is 0 , π^+ is 0 , n is 0	(1)	
	Show total lepton number before = total lepton number after, with conclusion	(1)	4
	that lepton number is conserved Dependent on MP3	(1)	4
	Example of deduction		
	Charge before = $+1$, charge after = $+1 + 0 = +1$ Charge before = charge after, so conservation of charge applies		
	Lepton number before = 0, charge after = $0 + 0 = 0$ Lepton number before = lepton number after, so conservation of lepton applies		
18(b)(iii)	Use of trigonometrical function for x component of π momentum Or Use of trigonometrical function for y component of π momentum	(1)	
	Applies conservation of momentum	(1)	
	Applies trigonometry to calculate final angle for neutron	(1)	
	Applies trigonometry or Pythagoras to calculate magnitude	(1)	
	Angle = 16.8°	(1)	
	Magnitude = $3.36 \times 10^{-19} \text{ kg m s}^{-1}$	(1)	6
			Ŭ
	$p = 3.36 \times 10^{-19} \text{ kg m s}^{-1}$		

18(b)(iv)	Curving to the right (clockwise) (1)	
	Correct initial direction (1)	
	Smaller radius of curvature than sigma (1)	
	No line for neutron (stated or dependent on seeing line definitively for pion) (1)	4
	\mathbf{x}		
	Total for question 18		17